МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЯРАШЪЮСКАЯ ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

Согласовано:

зам. директора по УВР

«<u>31» 08.</u> 20<u>19</u>г

Mur Muerranela BB

Утверждено:

пректор шконя

от 20 г 9 г

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

«химия»

Уровень обучения (класс): основное общее (8 - 9 классы) Срок реализации программы 2 года

Составитель: Белякова Ольга Николаевна, учитель биологии, химии, географии

Составлена на основе:

Примерных программ по учебным предметам. Химия. 8 – 9 классы. – 3-е изд., перераб. – М.: Просвещение, 2011. – 48с. – (Стандарты второго поколения).

пст.Ярашъю

2019 год

Пояснительная записка

Рабочая программа по химии для основного общего образования (8-9 класс) составлена на основе следующих документов

- 1) Об образовании в Российской Федерации: Федеральный закон от 29 декабря 2012 г. №273-Ф3.
- 2) Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»: постановление Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 г. № 189.
- 3) Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2015-16 учебный год: приказ Министерства образования и науки Российской Федерации от 19 декабря 2012 г. № 1067.
- 4) Федеральный Государственный образовательный стандарт основного общего образования: приказ Минобрнауки России от 17 декабря 2010г. № 1897.
- 5) Приказ Министерства образования и науки РФ от 29 декабря 2014 г. №1644 «О внесении изменений в приказ Министерства образования и науки Российской Федерации от 17 декабря 2010г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования»
- 6) Основная образовательная программа основного общего образования МОУ Ярашъюская ООШ.
- 7) Примерная основная образовательная программа образовательного учреждения: письмо департамента общего образования Министерства образования и науки Российской Федерации от 01 ноября 2011г. № 03-776
- 8) Примерные программы по учебным предметам. Химия. 8 9 классы. 3-е изд., перераб. М.: Просвещение, 2011. 48с. (Стандарты второго поколения).

Изучение химии на ступени основного общего образования направлено на достижение следующих целей:

- освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;

- *развитие* познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- *воспитание* отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

В течение первого года обучения химии (8 класса) главное внимание уделяется формированию у учащихся элементарных химических навыков, "химического языка" и химического мышления в первую очередь на объектах, знакомых им из повседневной жизни (кислород, воздух, вода).

Согласно базисному учебному плану количество часов 72.

На втором году обучения (9 класс) рассматриваются основы стехиометрии, изучаются теории электролитической диссоциации и окислительно-восстановительных превращений. На их основе подробно рассматриваются свойства неорганических веществ — металлов, неметаллов и их соединений. В специальном разделе кратко рассматриваются элементы органической химии и биохимии в объеме, предусмотренном образовательным стандартом.

Согласно базисному учебному плану количество часов 68.

Содержание учебного предмета

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, создании основы химических знаний, необходимых для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры.

Успешность изучения химии связана с овладением химическим языком, соблюдением правил безопасной работы при выполнении химического эксперимента, осознанием многочисленных связей химии с другими предметами школьного курса.

Программа включает в себя основы неорганической и органической химии. Главной идеей программы является создание базового комплекса опорных знаний по химии, выраженных в форме, соответствующей возрасту обучающихся. В содержании данного курса представлены основополагающие химические теоретические знания, включающие изучение состава и строения веществ, зависимости их свойств от строения, прогнозирование свойств веществ, исследование закономерностей химических превращений и путей управления ими в целях получения веществ и материалов.

Теоретическую основу изучения неорганической химии составляет атомномолекулярное учение, Периодический закон Д.И. Менделеева с краткими сведениями о строении атома, видах химической связи, закономерностях протекания химических реакций.В изучении курса значительная роль отводится химическому эксперименту: проведению практических и лабораторных работ, описанию результатов ученического эксперимента, соблюдению норм и правил безопасной работы в химической лаборатории.Реализация данной программы в процессе обучения позволит обучающимся усвоить ключевые химические компетенции и понять роль и значение химии среди других наук о природе.Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний основано на межпредметных связях с предметами: «Биология», «География», «История», «Литература», «Математика», «Основы безопасности жизнедеятельности», «Русский язык», «Физика», «Экология».

Первоначальные химические понятия

Предмет химии. Тела и вещества. Основные методы познания: наблюдение, измерение, эксперимент. Физические и химические явления. Чистые вещества и смеси. Способы разделения смесей. Атом. Молекула. Химический элемент. Знаки химических элементов. Простые и сложные вещества. Валентность. Закон постоянства состава вещества. Химические формулы. Индексы. Относительная атомная и молекулярная массы. Массовая доля химического элемента в соединении. Закон сохранения массы веществ. Химические уравнения. Коэффициенты. Условия и признаки протекания химических реакций. Моль – единица количества вещества. Молярная масса.

Кислород. Водород

Кислород — химический элемент и простое вещество. Озон. Состав воздуха. Физические и химические свойства кислорода. Получение и применение кислорода. Тепловой эффект химических реакций. Понятие об экзо- и эндотермических реакциях. Водород — химический элемент и простое вещество. Физические и химические свойства водорода. Получение водорода в промышленности.

Применение водорода. Закон Авогадро. Молярный объем газов. Качественные реакции на газообразные вещества (кислород, водород). Объемные отношения газов при химических реакциях.

Вода. Растворы

Вода в природе. Круговорот воды в природе. Физические и химические свойства воды. Растворы. Растворимость веществ в воде. Концентрация растворов. Массовая доля растворенного вещества в растворе.

Основные классы неорганических соединений

Классификация. оксидов. Оксиды. Номенклатура. Физические свойства Химические свойства оксидов. Получение и применение оксидов. Основания. Классификация. Номенклатура. Физические свойства оснований. Получение оснований. Химические свойства оснований. Реакция нейтрализации. Кислоты. Классификация. Номенклатура. Физические свойства кислот. Получение и применение кислот. Химические свойства кислот. Индикаторы. Изменение окраски индикаторов в различных средах. Соли. Классификация. Номенклатура. Физические свойства солей. Получение и применение солей. Химические свойства солей. Генетическая связь между классами неорганических соединений. Проблема безопасного использования веществ и химических реакций в повседневной жизни. Токсичные, горючие и взрывоопасные вещества. Бытовая химическая грамотность.

Строение атома. Периодический закон и периодическая система химических элементов Д.И. Менделеева

Строение атома: ядро, энергетический уровень. Состав ядра атома: протоны, нейтроны. Изотоны. Периодический закон Д.И. Менделеева. Периодическая система химических элементов Д.И. Менделеева. Физический смысл атомного (порядкового) номера химического элемента, номера группы и периода периодической системы. Строение энергетических уровней атомов первых 20 химических элементов периодической системы Д.И. Менделеева. Закономерности изменения свойств атомов химических элементов и их соединений на основе положения в периодической системе Д.И. Менделеева и строения атома. Значение Периодического закона Д.И. Менделеева.

Строение веществ. Химическая связь

Электроотрицательность атомов химических элементов. Ковалентная химическая связь: неполярная и полярная. Понятие о водородной связи и ее влиянии на физические свойства веществ на примере воды. Ионная связь. Металлическая связь. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств веществ от типа кристаллической решетки.

Химические реакции

Понятие о скорости химической реакции. Факторы, влияющие на скорость химической реакции. Понятие о катализаторе. Классификация химических реакций по различным признакам: числу и составу исходных и полученных веществ; изменению степеней окисления атомов химических элементов; поглощению или выделению энергии. Электролитическая диссоциация. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Реакции ионного обмена. Условия протекания реакций ионного обмена. Электролитическая диссоциация кислот, щелочей и солей. Степень окисления. Определение степени окисления атомов химических элементов в соединениях. Окислитель. Восстановитель. Сущность окислительно-восстановительных реакций.

Неметаллы IV – VII групп и их соединения

Положение неметаллов в периодической системе химических элементов Д.И. Менделеева. Общие свойства неметаллов. Галогены: физические и химические свойства. Соединения галогенов: хлороводород, хлороводородная кислота и ее соли. Сера: физические и химические свойства. Соединения серы: сероводород, сульфиды, оксиды серы. Серная, сернистая и сероводородная кислоты и их соли. Азот: физические и химические свойства. Аммиак. Соли аммония. Оксиды азота. Азотная кислота и ее соли. Фосфор: физические и химические свойства. Соединения фосфора: оксид фосфора (V), ортофосфорная кислота и ее соли. Углерод: физические и химические свойства. Аллотропия углерода: алмаз, графит, карбин, фуллерены. Соединения углерода: оксиды углерода (II) и (IV), угольная кислота и ее соли. Кремний и его соединения.

Металлы и их соединения

Положение металлов в периодической системе химических элементов Д.И. Менделеева. Металлы в природе и общие способы их получения. Общие физические свойства металлов. Общие химические свойства металлов: реакции с неметаллами, кислотами, солями. Электрохимический ряд напряжений металлов. Щелочные металлы и их соединения. Щелочноземельные металлы и их соединения. Алюминий. Амфотерность оксида и гидроксида алюминия. Железо. Соединения железа и их свойства: оксиды, гидроксиды и соли железа (II и III).

Первоначальные сведения об органических веществах

Первоначальные сведения о строении органических веществ. Углеводороды: метан, этан, этилен. *Источники углеводородов: природный газ, нефть, уголь*. Кислородсодержащие соединения: спирты (метанол, этанол, глицерин), карбоновые кислоты (уксусная кислота, аминоуксусная кислота, стеариновая и олеиновая кислоты).

Биологически важные вещества: жиры, глюкоза, белки. Химическое загрязнение окружающей среды и его последствия.

Типы расчетных задач:

- 1. Вычисление массовой доли химического элемента по формуле соединения. Установление простейшей формулы вещества по массовым долям химических элементов.
- 2. Вычисления по химическим уравнениям количества, объема, массы вещества по количеству, объему, массе реагентов или продуктов реакции.
 - 3. Расчет массовой доли растворенного вещества в растворе.

Тематическое планирование по химии по курсу 8-9 классов

Nº	Название раздела	Количество часов	Примечание
	8 класс		
1	Первоначальные химические понятия. Периодический закон и Периодическая система химических элементов	26	
2	Кислород. Горение	7	
3	Водород	4	
4	Растворы. Вода	5	
5	Обобщение сведений о важнейших классах неорганических соединений	12	
6	Химическая связь. Строение веществ	5	
7	Закон Авогадро. Молярный объем газов	3	
8	Галогены	7	
9	Повторение	3	
	Итого	72	
	9 класс		
1	Повторение основных вопросов курса химии 8 класса	4	

		11	
2	Электролитическая диссоциация		
	Электролитическая диссоциация	+ 10	
		10	
3	Кислород и сера		
<u> </u>	тыскород и сери	9	
		9	
4	Азот и фосфор		
		6	
_			
5	Углерод и кремний		
		3	
_	06		
6	Общие свойства металлов		
		3	
7	Металлы 1А-3А групп ПСХЭ Д.И.Менделеева		
/	тиеталлы тү-эх трушт тохэ длилиенделеева		
		4	
8	Железо		
	7ACACSO		
		3	
9	Металлургия		
		9	
10	Краткий обзор важнейших органических веществ		
		6	
11	V		
11	Химия и жизнь		
		68	
	INTOFO		
	ОТОТИ		

Планируемые результаты освоения учебного предмета

При изучении химии в основной школе обеспечивается достижение личностных, метапредметных и предметных результатов.

Личностные результаты обучения:

- 1. В ценностно-ориентационной сфере: воспитание чувства гордости за российскую химическую науку, гуманизма, позитивного отношения к труду, целеустремленности; формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей; формирование экологического мышления: умения оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.
- 2. В трудовой сфере: воспитание готовности к осознанному выбору дальнейшей образовательной траектории.
- 3. В познавательной (когнитивной, интеллектуальной) сфере: формирование умения управлять своей познавательной деятельностью; развитие собственного целостного мировоззрения, потребности и готовности к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы; формирование основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта

экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях.

Учащийся должен:

знать и понимать: основные исторические события, связанные с развитием химии и общества; достижения в области химии и культурные традиции (в частности, научные традиции) своей страны; общемировые достижения в области химии; основные принципы и правила отношения к природе; основы здорового образа жизни и здоровьесберегающих технологий; правила поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ; основные права и обязанности гражданина (в том числе учащегося), связанные с личностным, профессиональным и жизненным самоопределением; социальную значимость и содержание профессий, связанных с химией;

испытывать: чувство гордости за российскую химическую науку и уважение к истории ее развития; уважение и принятие достижений химии в мире; любовь к природе; уважение к окружающим (учащимся, учителям, родителям и др.) — уметь слушать и слышать партнера, признавать право каждого на собственное мнение, принимать решения с учетом позиций всех участников; чувство прекрасного и эстетических чувств на основе знакомства с миром веществ и их превращений; самоуважение и эмоционально-положительное отношение к себе;

признавать: ценность здоровья (своего и других людей); необходимость самовыражения, самореализации, социального признания;

осознавать: готовность (или неготовность) к самостоятельным поступкам и действиям, ответственность за их результаты; готовность (или неготовность) открыто выражать и отстаивать свою позицию и критично относиться к своим поступкам;

проявлять: экологическое сознание; доброжелательность, доверие и внимательность к людям, готовность к сотрудничеству и дружбе, оказанию помощи тем, кто в ней нуждается обобщенный, устойчивый и избирательный познавательный интерес, инициативу и любознательность в изучении мира веществ и реакций; целеустремленность и настойчивость в достижении целей, готовность к преодолению трудностей; убежденность в возможности познания природы, необходимости разумного использования достижений науки и технологий для развития общества;

уметь: устанавливать связь между целью изучения химии и тем, для чего она осуществляется (мотивами); выполнять корригирующую самооценку, заключающуюся в контроле за процессом изучения химии и внесении необходимых коррективов, соответствующих этапам и способам изучения курса химии; выполнять ретроспективную самооценку, заключающуюся в оценке процесса и результата изучения курса химии

основной школы, подведении итогов на основе соотнесения целей и результатов; строить жизненные и профессиональные планы с учетом конкретных социально-исторических, политических и экономических условий; осознавать собственные ценности и соответствие их принимаемым в жизни решениям; вести диалог на основе равноправных отношений и взаимного уважения; выделять нравственный аспект поведения и соотносить поступки (свои и других людей) и события с принятыми этическими нормами; в пределах своих возможностей противодействовать действиям и влияниям, представляющим угрозу жизни, здоровью и безопасности личности и общества.

Метапредметные результаты обучения:

использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности; использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов; умение генерировать идеи и определять средства, необходимые для их реализации; умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике; использование различных источников для получения химической информации.

Учащийся должен уметь:

- ✓ понимать логику научного познания;
- ✓ строить, выдвигать и формулировать гипотезы;
- ✓ сопоставлять оппозиционные точки зрения на научную проблему;
- ✓ на конкретных примерах иллюстрировать сложность строения материи (корпускулярно-волновой дуализм электрона), условность любой классификации при большом многообразии веществ,
- ✓ проводить классификацию веществ по числу видов атомов, входящих в состав вещества;

систематизировать и обобщать различные виды информации (в том числе зрительную — о цвете вещества и его агрегатном состоянии, обонятельную — о его запахе, умозрительную, взятую из справочника);

- ✓ проводить классификацию сложных веществ по отдельным классам;
- ✓ сравнивать свойства различных веществ (на примере кислорода и водорода);
- ✓ проводить корреляцию между свойствами вещества и его применением (на примере кислорода и водорода);

✓ знать способы очистки воды от примесей и осознавать необходимость бережного отношения к водным запасам страны;

использовать индуктивный и дедуктивный подходы при анализе свойств веществ;

- ✓ строить классификацию сразу по нескольким признакам сравнения (на примере химических реакций), понимая ограниченность любой классификации;
- ✓ осуществлять химический эксперимент (например, исследование электропроводности твердых веществ и растворов, проведение реакций обмена в растворах электролитов);
 - ✓ анализировать экспериментальные данные;
- ✓ классифицировать вещества по разным признакам сравнения, в том числе с точки зрения электропроводности их растворов;
- ✓ классифицировать химические реакции по числу и виду реагентов и продуктов, выделению или поглощению теплоты, обратимости, наличию переноса электронов;
 - ✓ строить графические модели химических процессов (диссоциация, гидратация);
 - ✓ строить, выдвигать и формулировать гипотезы;
 - ✓ сопоставлять оппозиционные точки зрения на научную проблему;
- ✓ моделировать строение атомов элементов металлов (на примере элементов малых периодов и железа);
 - ✓ делать выводы;
 - ✓ проводить корреляцию между составом, строением и свойствами веществ;
 - ✓ определять цели и задачи деятельности и применять их на практике;
 - ✓ понимать логику научного познания;
- ✓ строить, выдвигать и формулировать гипотезы, сопоставлять оппозиционные точки зрения на научную проблему;

на конкретных примерах иллюстрировать сложность строения материи (корпускулярно-волновой дуализм электрона), условность любой классификации при большом многообразии веществ, каждое из которых обладает уникальными свойствами.

Предметные результаты обучения

1. В познавательной сфере: знание определений изученных понятий: умение описывать демонстрационные и самостоятельно проведенные химические эксперименты, используя для этого родной язык и язык химии; умение различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции, описывать их; умение классифицировать изученные объекты и явления; способность делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со

свойствами изученных; умение структурировать изученный материал и химическую информацию, полученную из других источников; умение моделировать строение атомов элементов 1-3 периодов, строение простых молекул;

- 2. В ценностно-ориентационной сфере: умение анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
 - 3. В трудовой сфере: формирование навыков проводить химический эксперимент;
- 4. В сфере безопасности жизнедеятельности: умение различать опасные и безопасные вещества; умение оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Учащийся должен уметь:

- ✓ давать определения понятий: «элемент», «атом», «молекула», «вещество», «простые и сложные вещества», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента в соединении», «химическая реакция»;
 - ✓ описывать свойства различных веществ;
 - ✓ наблюдать проводимые самостоятельно и другими учащимися опыты;
 - ✓ проводить химический эксперимент;
 - ✓ оказывать первую помощь при отравлениях и травмах в лаборатории;
- ✓ давать определения понятий: «валентность», «оксид», «кислота», соль», «основание», «раствор», «массовая доля растворенного вещества»;
 - ✓ описывать свойства кислорода, водорода, воды;
- ✓ знать способы получения кислорода и водорода в промышленности и в лаборатории;
 - ✓ проводить химический эксперимент по получению кислорода;
 - ✓ составлять формулы сложных веществ по валентности;
 - ✓ рассматривать атом как химически неделимую частицу сложного строения;
- ✓ знать историческую и современную формулировки Периодического закона Д. И. Менделеева;
- ✓ описывать и моделировать электронное строение атомов элементов малых периодов;
 - ✓ давать определение понятия «химический элемент»;
 - ✓ представлять двойственную (корпускулярно-волновую) природу электрона;
- ✓ прогнозировать свойства неизученных веществ, пользуясь Периодической системой химических элементов Д. И. Менделеева и зная свойства уже изученных;

- ✓ давать определения понятий: «электролит», «неэлектролит», «электролитическая диссоциация», «степень диссоциации», «равновесие», «скорость реакции», «окислитель», «восстановитель», «окисление», «восстановление», «электролиз», «тепловой эффект химической реакции», «экзотермический и эндотермический процессы»;
 - ✓ разделять электролиты на сильные и слабые;
 - ✓ записывать сокращенные и полные ионные уравнения реакций;
- ✓ формулировать признаки необратимого протекания реакций обмена в водных растворах электролитов;
 - ✓ знать классификацию химических реакций по обратимости;
- ✓ формулировать принцип Ле Шателье и анализировать факторы (на качественном уровне), влияющие на величину скорости химической реакции;
- ✓ понимать сущность окислительно-восстановительной реакции как процесса переноса электронов;
- ✓ давать определения понятий: «электролит», «неэлектролит», «электролитическая диссоциация», «степень диссоциации», «равновесие», «скорость реакции», «окислитель», «восстановитель», «окисление», «восстановление», «электролиз», «тепловой эффект химической реакции», «экзотермический и эндотермический процессы»;
- ✓ формулировать признаки необратимого протекания реакций обмена в водных растворах электролитов;
 - ✓ знать классификацию химических реакций по обратимости;
- ✓ формулировать принцип Ле Шателье и анализировать факторы (на качественном уровне), влияющие на величину скорости химической реакции;
- ✓ понимать сущность окислительно-восстановительной реакции как процесса переноса электронов;
- описывать (в том числе и уравнениями реакций) процессы, протекающие при электролизе расплавов электролитов;
- ✓ описывать и различать изученные химические вещества (хлор, хлороводород, хлориды, серу, сероводород, сернистый газ, серную кислоту и ее соли, азот, аммиак, азотную кислоту и ее соли, фосфор, фосфорную кислоту, углерод, угарный и углекислый газы, угольную кислоту и ее соли, оксид кремния, кремниевую кислоту и ее соли);
- ✓ качественно определять наличие в соединениях анионов соляной, серной, угольной и кремниевой кислот;
 - ✓ классифицировать изученные химические соединения по разным признакам;
- ✓ описывать демонстрационные и лабораторные эксперименты с изученными веществами;

- ✓ анализировать эксперименты и теоретические сведения, делать из них умозаключения и выводы;
- ✓ формулировать общие свойства металлов как химических элементов и простых веществ;
 - ✓ описывать электронное строение атомов элементов металлов;
- ✓ описывать и анализировать свойства простых веществ-металлов (на примере щелочных металлов, кальция, алюминия, железа) и их соединений;
- ✓ проводить самостоятельно, наблюдать (на уроке и в повседневной жизни), описывать и анализировать химические явления, характеризующие различные свойства металлов и их соединений;
- ✓ структурировать изученный материал и химическую информацию, полученную из других источников.

Метапредметные результаты обучения

Учащиеся должны уметь:

- ✓ понимать логику научного познания;
- ✓ строить, выдвигать и формулировать гипотезы, сопоставлять оппозиционные точки зрения на научную проблему;
- ✓ на конкретных примерах иллюстрировать сложность строения материи (корпускулярно-волновой дуализм электрона), условность любой классификации при большом многообразии веществ, каждое из которых обладает уникальными свойствами.